Preliminary communication

CHEMISCHE UND STRUKTURELLE CHARAKTERISIERUNG EINES EISENACYLPHOSPHORYLIDS

HERBERT BLAU, WOLFGANG MALISCH*, SIEGFRIED VORAN, KONRAD BLANK und CARL KRÜGER

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland 8700 Würzburg (Deutschland) und Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 4330 Mühlheim Ruhr 1 (Deutschland)

(Eingegangen den 10. September 1980)

Summary

 $[Cp(CO)_3Fe]BF_4$ reacts with Me₃P=CHSiMe₃ to give Cp(CO)₂FeC(O)CH= PMe₃ (III), $[Me_3PCH_2SiMe_3]BF_4$ and $Me_3P=C(SiMe_3)_2$ via ylidic attack at the carbonyl carbon, transylidation and H/SiMe₃-exchange. III is converted with HCl, MeI and Me₃SiCl to the ironacyl-phosphonium salts $[Cp(CO)_2FeC(O)-$ CHRPMe₃]X (IVa-IVc). The X-ray structure analysis of III reveals an extensive electronic transfer of the ylidic charge to the acyl carbon. This transfer is reduced in favor of a metal-carbon $(d \rightarrow p)\pi$ interaction in the thermolabile ylide Cp(CO)(PPhMe₂)FeC(O)CH=PMe₃ (V).

Die neutralen Metallcarbonyle $M(CO)_6$ (M = Cr. Mo, W) und Fe(CO)₅ reagieren mit $Me_3P=CHSiMe_3$ [1] zu den Trimethylsiloxy(phosphorylid)carben-Komplexen (CO)_{n-1}M=C(OSiMe₃)CH=PMe₃. Addition der Ylidfragmente Me₃PCH und SiMe₃ an metallkoordiniertes Kohlenmonoxid verläuft unter Ylidanlagerung am Carbonylkohlenstoff und Übertragung der Silylgruppe vom Ylidkohlenstoff auf den Sauerstoff der gebildeten Acyleinheit [2].

Um zu prüfen, ob sich dieses Reaktionsprinzip auch zur Darstellung kationischer Ylidcarbenkomplexe ausnützen lässt, wurde $[Cp(CO)_3Fe]BF_4$, dessen Fähigkeit zur Ylidaddition nachgewiesen ist [3,4] mit Me₃P=CHSiMe₃ umgesetzt. Quantitative Reaktion erfordert drei Äquivalente Ylid. Isoliert werden das Eisenacylylid (III), $[Me_3PCH_2SiMe_3]BF_4$ und $Me_3P=C(SiMe_3)_2$. Entsprechend dieser Produktbildung schliesst sich der primären Ylidaddition (a) zu I nicht eine Silylwanderung sondern eine Deprotonierung (b) durch ein

*Korrespondenzautor.

**Röntgenstrukturanalyse.

zweites Mol Ylid zu II an, das dann mit weiterem $Me_3P=CHSiMe_3$ unter H/SiMe_3-Austausch (c) zu III abreagiert [5].

Die Einwirkung von 2 Mol $Me_3P=CHSiMe_3$ auf das nach Gl. 2 dargestellte silylierte Eisenacyl-Phosphoniumsalz $[Cp(CO)_2FeC(O)HC(SiMe_3)PMe_3]Cl (IVc)$, dessen Kationteil mit dem des Intermediats I identisch ist, liefert die gleiche Produktverteilung, was die Teilschritte (b) und (c) belegt. Überraschend ist die leichte Übertragung der Silylgruppe auf $Me_3P=CHSiMe_3$, die sterische Gründe hat*. Ausserdem dürfte hierbei die Acylfunktion assistieren.

Die glatte Reaktion von III mit HCl, MeI und Me₃SiCl zu den Eisenacyl-Phosphoniumsalzen (IVa—IVc) bestätigt den Ylidcharakter des Trimethylphosphoranylidenacetyl-Liganden.

IVc ist im Vergleich zu IVa, IVb aus den bereits für das korrespondierende Ylid II diskutierten Gründen ausserordentlich temperaturempfindlich.

Kohlenmonoxid lässt sich in III weder thermisch noch photochemisch gegen PMe_3 austauschen, ausserdem ist die Acylfunktion inert gegenüber einem carbanionischen Angriff von $Me_3P=CH_2$. Beides ist für Metallacylverbindungen ungewöhnlich [6.7] und deutet auf eine ausgeprägten Wechselwirkung des ylidischen Carbanions mit der Acylfunktion in III hin. Dies wird durch die

^{*}Elektronisch sollte der Silylsubstituent die Ylidfunktion stabilisieren. Modellbetrachtungen zeigen aber, dass sich die SiMe₁- und Cp(CO), Fe-Gruppierung in III räumlich sehr nahe kommen.

Röntgenstrukturanalyse^{*} von III bestätigt, die mit 1.391(1) Å einen relativ kurzen Abstand für die zentrale C_{Acyl} - C_{Ylid} -Bindung liefert^{**} an der die PMe₃- und die Cp(CO)₂Fe Gruppierung eine *trans*-Stellung einnehmen (Fig. 1).

Fig. 1. Molekülstruktur von Cp(CO)₂FeC(O)CH=PMe₃ mit Bindungsabständen und Winkeln.

Die angenäherte Planarität des Bindungssystems $Fe-C_3-(O-C_4-P)$ (Torsionswinkel 8°, max. Abweichung von der Ebene 0.07 Å) sowie die um 0.05 Å aufgeweitete P-CY_{lid}-Bindung [8] wie auch die Verkürzung der P-CH₃-Bindungen um etwa 0.08 Å weisen auf eine Beteiligung der Phosphoniumenolatform am Grundzustand von III hin.

Ein Elektronentransfer von Metall zur Acylfunktion tritt demgegenüber in den Hintergrund. Mit 2.039(1) Å liegt der Abstand Fe- C_{acyl} an der oberen Grenze bekannter Werte [9] für Fe- $C(sp^2)$ -Bindungen. Diese Wechselwirkung gewinnt erst im Falle der stärker donierenden Cp(CO)(PPhMe₂)Fe-Gruppierung an Bedeutung, die sich auf dem Wege der Addition/Umylidierung ausgehend

^{*}Zelldaten: a 10.721(3), b 10.293(3), c 12.329(3) Å, β 93.84(2)°, V 1357.47 Å³, Raumgruppe P2₁/a, Z = 4, d_c 1.438 g cm⁻³, 3912 Reflexe (λ 0.71069 Å) davon 1002 unbeobachtet (2 σ); R =

^{0.036,} $R_w = 0.040$ (247 Parameter). Atomlagekoordinaten sind in Tabelle 1 wiedergegeben.

^{**}Der gefundene Wert entspricht dem $C(sp^2)$ -- $C(sp^2)$ -Abstand aromatischer Systeme.

TABELLE 1

ATOMKOORDINATEN MIT STANDARDABWEICHUNGEN (X 10 ⁴)				
Atom	x	у	Z	
Fe	2151(1)	4956(1)	3288(1)	
Р	2299(1)	1224(1)	1281(1)	
0(1)	-23(1)	3725(2)	4113(1)	
0(2)	567(1)	6654(2)	1914(1)	
O(3)	2408(1)	4057(1)	1142(1)	
C(1)	842(1)	4189(2)	3781(1)	
C(2)	1206(2)	5966(2)	2448(1)	
C(3)	2195(1)	3646(2)	2052(1)	
C(4)	2049(1)	2335(2)	2283(1)	
C(5)	1239(2)	1374(4)	101(2)	
C(6)	3823(2)	1277(3)	782(2)	
C(7)	2159(4)	-387(3)	1810(4)	
Cp(1)	4109(1)	4571(3)	3429(2)	
Cp(2)	3896(2)	5896(3)	3207(2)	
Cp(3)	3260(2)	6427(3)	4078(2)	
Cp(4)	3080(2)	õ449(4)	4793(2)	
Cp(5)	3584(2)	4280(3)	4407(2)	
HC(4)	1884(21)	1906(28)	2936(17)	
H(1)C(5)	423(26)	1111(32)	, 319(19)	
H(2)C(5)	1233(27)	2277(35)	-111(22)	
H(3)C(5)	1472(23)	732(35)	-435(19)	
H(1)C(6)	3902(25)	2066(36)	479(21)	
H(2)C(6)	4451(22)	1135(29)	1362(16)	
H(3)C(6)	3935(23)	618(33)	218(19)	
H(1)C(7)	2874(28)	-394(35)	2459(22)	
H(2)C(7)	1342(29)	-418(38)	2061(23)	
H(3)C(7)	2294(23)	-917(35)	1252(19)	
HCp(1)	4536(21)	3876(30)	2980(16)	
HCp(2)	4112(19)	6316(28)	2536(15)	
HCp(3)	3014(23)	7288(32)	4113(19)	
HCp(4)	2686(21)	5489(30)	5445(17)	
HCp(5)	3557(22)	3457(29)	4740(17)	

von $[Cp(CO)(PPhMe_2)Fe]BF_4$ und Me_3PCH_2 an der Acylfunktion einführen lässt*.

In V erscheint die $\nu(C(O))$ -Bande gegenüber III um 20 cm⁻¹ zu niederen Wellenzahlen verschoben. Die hieraus ableitbare zusätzliche elektronische Belastung der C(O)-Einheit bedingt eine äusserst labile C_{Acyl}--C_{Ylid}-Bindung. V wandelt sich bereits bei Raumtemperatur in Cp(CO)(PPhMe₂)FeC(O)Me um. Der Mechanismus dieser Zerfallsreaktion sowie der Verbleib der Me₂P=CH-Einheit werden zur Zeit studiert.

^{*}III ist nach gleichem Muster zugänglich. Nach diesem Reaktionsprinzip wurde bereits $Ph_3P=CHC(O)Fe(CO)_2Cp$ dargestellt. Vgl. Ref. 4.

Experimenteller Teil

 η^1 -Trimethylphosphoranylidenacetyl-dicarbonyl(η^5 -cyclopentadienyl)eisen (III). In 60 ml THF suspendiertes $[Cp(CO)_3Fe]BF_4$ 2.14 g (7.33 mmol) wird bei -30°C unter Rühren mit 3.57 g (21.99 mmol) Me₃PCHSiMe₃, in 20 ml THF, versetzt. Es wird 2 h bei -20° C gerührt, auf Raumtemperatur erwärmt und hellgraues [Me₃PCH₂SiMe₃]BF₄ (1.43 g (78%) Schmp. 237°C) abgetrennt. Das Filtrat wird im Vakuum zur Trockene gebracht und der ölige, rotbraune Rückstand mit 20 ml Toluol extrahiert. Nach Zusatz von 40 ml Pentan und Abkühlen auf -30°C kristallisiert III in Form bernsteinfarbener Quader. Ausbeute 1.44 g (67%); Schmp. 93°C. Aus der Lösung wird Me₃PC(SiMe₃)₂ gewonnen und spektroskopisch identifiziert. ¹H-NMR (C_6H_6 , int. Stand. δ (ppm) 7.25): δ 4.74 (s, 5H, C₅H₅); δ 3.55 (d, 1H, HC=P, ²J(HCP) 37 Hz); δ 0.97 (d, 9H, CH₃P, ²J(HCP) 14 Hz). ³¹P-{¹H}-NMR (C₆D₆, H₃PO₄ ext.) δ -10.2. ¹³C-{¹H}-NMR (C₆D₆, TMS int.): δ 218.9 (s, CO), δ 86.6 (s, C₅H₅), δ 12.6 (d, CH₃P, J(CP) 57.4 Hz). IR (C₆H₆): v(CO) 1995vs, 1930vs; v(C(O)) 1510m cm⁻¹. Gef. C, 48.78; H, 5.25. Molmasse $[M - CO]^+$ 266. C₁₂H₁₅FeO₃P (294.07) ber.: C, 49.01; H, 5.14%.

[η^1 -Trimethylphosphonium(trimethylsilyl)acetyl-dicarbonyl-(η^5 -cyclopentadienyl)eisen(II)]chlorid (IVa) 0.57 g (1.95 mmol) III werden in 20 ml Benzol bei Raumtemperature unter Rühren tropfenweise mit 0.21 g (1.95 mmol) Me₃SiCl, gelöst in 10 ml des gleichen Solvens, versetzt. Der feine hellgelbe Niederschlag wird nach 2stdg. Rühren abgefrittet, dreimal mit je 10 ml Benzol gewaschen und im Vakuum getrocknet. Ausbeute 0.67 g (84.9%); Schmp. 127°C. ¹H-NMR (CD₃CN, int. Stand.: δ 1.93): δ 5.09 (s, 5H, C₅H₅); δ 4.35 (d, 1H, HC, ²J(HCP) 37 Hz); δ 1.81 (d, 9H, CH₃P, ²J(HCP) 14.4 Hz); δ 0.06 (s, 9H, CH₃Si). IR (CH₃CN): ν (CO) 2025s, 1974vs(br); ν (C(O)) 1628m. Gef. C, 42.70; H, 6.78. C₁₅H₂₄CIFeO₃PSi (402.7) ber.: C, 44.73; H, 6.00%.

 η^{1} -Trimethylphosphoranylidenacetyl-carbonyl(η^{5} -cyclopentadienyl)(dimethylphenylphosphan)eisen(II) (V): 1.08 g (2.68 mmol) [Cp(CO)(Me₂PhP)Fe]BF₄ suspendiert in 40 ml THF werden bei -40°C innerhalb von 1 h mit 0.46 g (5.34 mmol) Me₃PCH, in 20 ml THF versetzt. Nach 24 h Rühren bei Raumtemperatur wird $[Me_P]BF_4$ (0.32 g (68%)) abgefrittet, die Reaktionslösung im Vakuum bis zur Trockene eingeengt, der dunkelbraune Rückstand mit 20 ml Benzol aufgenommen und der Extrakt mit 20 ml Pentan versetzt. Bei -10° C kristallisiert schwarzes Cp(CO)₂FeFe(CO)(Me₂PhP)Cp, das abgetrennt wird. Nach Versetzen mit weiteren 20 ml Pentan und Abkühlen auf -30°C werden 0.40 g (38%) Cp(CO)(Me₂PhP)FeC(O)CHPMe₃ (V) in Form brauner Kristalle isoliert, die laut spektroskopischer Analyse mit ca. 10% Cp(CO)-(Me₂PhP)FeC(O)Me verunreinigt sind, das aus V bei 25°C entsteht. ¹H-NMR (C_6D_6) , int. Stand. δ 7.25): δ 7.45 (m, 5H, C_6H_5); δ 4.57 (d, 5H, C_5H_5) ${}^{3}J(\text{HCP})$ 2 Hz); δ 4.05 (d, 1H, CH=P, ${}^{2}J(\text{HCP})$ 40 Hz); δ_{1} 1.97 (d, 3H, $CH_{3}P(Fe)$, ²J(HCP) 10 Hz), δ_{2} 1.70 (d, 3H, $CH_{3}P(Fe)$, ²J(HCP) 10 Hz); δ 1.10 (d, 9H, CH₃P=C, ²J(HCP) 13.2 Hz). IR (C₆H₆): ν (CO) 1901vs; ν (C(O)) $1490m(br) cm^{-1}$.

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie für finanzielle Unterstützung. Der Höchst AG, Werk Knapsack für eine Chemikalienspende.

Literatur

- 1 H. Schmidbaur und W. Tronich, Chem. Ber., 100 (1967) 1032.
- 2 W. Malisch, H. Blau und S. Voran, Angew. Chem., 90 (1978) 827; Angew. Chem. Int. Ed., 17 (1978) 780.
- 3 L. Weber, J. Organometal Chem., 122 (1976) 69.
- 4 L. Knoll, J. Organometal. Chem., 152 (1978) 311.
- 5 H. Schmidbaur und W. Malisch, Chem. Ber., 102 (1969) 83; 103 (1970) 3448.
- 6 W. Malisch und H. Rössner, unveröffentlicht.
- 7 W. Malisch, H. Blau und F.J. Haaf, Chem. Ber., zur Publ. eingereicht.
- 8 D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier Scientific Publishing Company, Amsterdam, 1974, p. 413; J.J. Daly in J.D. Dunitz and J.A. Ibers (Eds.), Perspectives in Structural Chemistry, Vol. III, Wiley, New York, 1970, p. 213.
- 9 C. Krüger, B.L. Barnett und D. Brauer in E.A. Koerner von Gustorf, F.W. Grevels and I. Fischler (Eds.), The Organic Chemistry of Iron, Vol. 1, Academic Press, New York, 1978.